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ABSTRACT
;f!

A two-dimensional model was developed and used in a
preliminary investigation of the relationship between flow
oscillation frequency, oscillation amplitude, and turbulent
boundary layer separation in a low speed, oscillating wind
tunnel.

It was found that the frequency of oscillation had a
profound effect upon the amplitude of oscillation and flow
separation. Frequencies from 20 Hz to 28 Hz and 70 Hz to
80 Hz allowed attachment of the boundary layer, while other

frequencies, up to 100 Hz, caused flow separation in an

eighteen degree divergent section.
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I. INTRODUCTION

Increased interest in the design and development of
vertical/short takeoff and landing (V/STOL) aircraft has
magnified the need to fully understand the complex flow
fields associated with their aerodynamic and propulsive
systems. The unique capabilities of such vehicles require
significant portions of their flight profiles to be performed
with much of the aircraft immersed in turbulent flow. When
in operation near the ground or landing platform, unsteady,
turbulent flow may become the dominant phenomenon.

Given the importance of this area of study and the
limitations of the analytical solutions, there is a surprisingly
small body of empirical work concerned with unsteady boundary
layers caused by freestream flow oscillation. This is perhaps
due to a lack of suitable test facilities; that is, facilities
that are capable of a wide range of freestream oscillation
frequencies and amplitudes. However, significant advances
were made by Karlsson [ﬁef. 17 who showed that flow oscillation
had little effect on the mean velocity profile of the turbulent
boundary layer, and Nickerson /Ref. 2/ who used hot-wire
anemometry in his study of the laminar boundary layer on a
flat plate. Despard /Ref. 3/ studied the separation of a
laminar boundary layer using a flow oscillation system

developed by Miller /Ref. 4/. Recently, Telionis /Ref. 5/

12
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used hot-wire anemometry to investigate the separation and

reattachment of boundary layers in unsteady conditions.

The purpose of this investigation was to develop a wind
tunnel model useful in determining the effects of various flow

oscillation frequencies upon the amplitude of the oscillation

ke

and their relationship, if any, to the separation of a

turbulent boundary layer. It was also desired to perform

initial testing on the equipment associated with a hot-wire

anemometry study of the turbulent boundary layer.




II. EXPERIMENTAL EQUIPMENT

A. OSCILLATING FLOW WIND TUNNEL
1. General Description

The low-speed, oscillating flow wind tunnel located
in the Aeronautics Laboratories of the Naval Postgraduate
School was utilized for this study. This wind tunnel is of
the open circuit design, with a 24-inch square by 223-inch
long test section. The tunnel inlet is 8-feet square,
resulting in a 1631 contraction ratio. Three high solidity
screens located in the inlet section upstream of the nozzle
produce measured freestream turbulence intensities of from
0.261 to 0.413 per cent for the test velocities.

The wind tunnel drive consists of two Joy Axivane
Fans in series, each of which has an internal 100 horsepower,
direct connected, 1750 rpm motor. The fan blades are
internally adjustable through a pitch range of 25 to 55 1
degrees, providing a wide operating range. Each fan bh~s a
separate set of variable inlet vanes that are multi-leaf in
design and are remotely adjustable to afford fine control of

test section mean velocity during tunnel operation. The

tunnel velocity range is from 10 to 250 feet per second,
although the maximum mean velocity used for this study was

148 feet per second. The inlet vanes are set to preswirl

the air flow in the direction of fan rotation in order to

14




reduce fanloads. To minimize wall deflections caused by large

and almost instantaneous changes in static pressure, the test
section upper and lower walls are constructed of continuous
pieces of two-inch thick aluminum, 24 inches wide and 223
inches in length. The test section wall facing the tunnel
control console is composed of three hinged, two-inch thick,
stress relieved Lucite panels. The Lucite doors, while
normally secured in the closed position by twelve large bolts
per panel during tunnel operation, may be hydraulically raised
for access to the test section. The back wall of the test
section is also composed of three panels that are manually
removable in order to facilitate model installation. For this
experimental study, the upstream back wall panel was made of
Lucite and the two downstream panels were constructed of two-
inch thick plywood to allow for instrumentation installation.

A plan view of the oscillating flow wind tunnel is
shown in Figure 1. An overall photographic view of the tunnel
as seen from downstream of the fan inlet vanes is shown in
Figure 2.

2. Flow Ogcillation System

A sinusoidal velocity component is introduced into the
mean freestream flow by harmonic solid blockage variations
downstream of the test section. This is accomplished by the
use of four horizontal, rotating shutter blades that completely

span the trailing edge of the test section. Four steel shafts,
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equidistant from each other and the test section walls, are
slotted to accept various width flat blades, thereby forming
a variable sized, multi-slotted, butterfly-type valve. A
photographic view of the shutters looking downstream from
the test section is shown in Figure 3. The use of this type

of shutter system to produce flow oscillations through a large

range of frequencies and amplitudes was employed by Karlsson

/[Ref. 1/, and is identical to that employed by Miller /Ref. 4/.
The drive for the shutter system is a five horsepower variable
speed electric motor coupled to the bottom shaft of the shutter {h
system via a belt and pulley system in order to produce a wide

variety of frequencies. The upper three shutter shafts are Lt

[

connected to each other and the driven shaft by timing belts
to insure that all four shutters rotate in phase. The total
range of remotely selectable shutter frequencies is from 0.1
to 240 Hertz. This investigation employed frequencies of from
1 to 100 Hertz.

Gross oscillation amplitude may be changed by the
installation of one of several sets of shutter blades having
different widths and therefore different blockage ratios.

The range of test section blockage produced by the various
shutter blades was from 25 to 98 per cent. This investigation
primarily utilized test section blockage of 67 and 98 per cent,
resulting in amplitude variations of from 3 to 108 per cent

of the mean freestream velocity. The shutters fixed in the fully
open position cause a non-oscillatory blockage of approximately ]i

five per cent.
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B. MODELS
1. Preliminary Models

In order to effectively investigate the effects of
unsteady flow on turbulent boundary layer separation, it was ;
necessary to develop a model that would produce boundary
layer separation in the neighborhood of a location in which {
the instrumentation could be conveniently introduced. In
order to accomplish this, several possible model geometries
were inexpensively constructed and tested in order to evolve
a configuration to be employed on a more fully instrumented,
and rugged, primary model. N

The preliminary models were of all wood construction
and were two-dimensional shapes spanning the width of the test
section, mounted to the floor of the test section, causing {
convergence and divergence of the section. The models all
used a Sk-inch long 6-inch thick main body with provisions for
interchangeable leading and trailing edge sections. Several 4
leading/trailing edge sections were constructed with inclines

of 12, 18, and 24 degrees. Figure 4 is a sketch of a prelim-

inary model showing the main body with 24 degree leading and
trailing edge sections installed. During the preliminary
study, the trailing edge section was tufted for visual
indications of turbulent flow and boundary layer separation.
2. Primary Model
Based on the results of the preliminary investigation,
a primary model was designed.

o
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The primary model was constructed of a continuous
upper surface skin of 0.100-inch thick aluminum, 62.5 inches
long, which was welded to three continuous pieces of 0.25-
inch thick aluminum forming three bulkheads, which were then
welded to a single, flat 0.25-inch aluminum deck. The primary
model was of the same general shape as the preliminary model,
with an 18 degree inclined trailing edge and parabolic leading
edge. Ports were cut into the six-inch high bulkheads to
facilitate service of surface pressure instrumentation and to
afford access to the bolts mounting the model to the tunnel
floor.

Along the port side, looking forward, twenty-seven
.040-inch static pressure ports were positioned four inches
from the test section wall. These pressure ports ran from
22 inches aft of the leading edge in two-inch intervals
until just forward of the point of the after-body ramp, where
they were positioned each inch, terminating 2.5 inches from
the trailing edge. The lateral positioning of these ports
was determined from measured velocity profiles shown in
Figure 5 /Ref. 3/ in order to be outside the wall boundary
layer and at the same time to leave the centerline of the
model free of ports and avoid interference with the multi- ‘
channel hot~wire probe.

Two, two-inch wide, 25.5-inch long strips of 0.040-
inch thick steel were imbedded into the model skin to enable

a magnetically mounted multi-channel, hot-wire anemometer

22
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probe to be easily positioned for boundary layer surveys.
Figure 6 shows the relative positions of the steel tracks
and the pressure ports.

Figure 7 shows the primary model in position in the
test section of the wind tunnel with the instrumentation

installed.

C. INSTRUMENTATION
1. Freestream Flow Sensors

A standard pitot-static tube and a hot-wire anemometer
probe were located six inches above the model at mid-chord
of both the preliminary and primary models to determine mean
freestream velocity. Dynamic pressure was read from a Meriam
micro-manometer for the preliminary model, and from a 50-tube
water manometer used also to measure the surface pressure
distribution for the primary model. The freestream kurbulence
was measured with a linearized hot-wire anemometer described
in Ref. 3.

The frequency of the shutter rotation, and therefore,
the frequency of flow oscillation, was measured with a digital
counter which read an electrical signal developed by an optical
system employing a stationary point light source and a rotating
chopper wheel fixed to the top shutter valve shaft.

2. Model Surface Flow Sensors
a. Preliminary Model
The principal method of investigation for the

preliminary model was the observation of tufts attached to

24
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the divergent section. In order Yo facilitate these observations,

a stroboscopic light was electrically triggered by a contact
on the uppermost shutter shaft to permit an optical freezing
of the motion of the tufts in the oscillating flow. The
stroboscopic light trigger was mounted on a rotatable base
assembly which allowed the tuft action to be viewed at any
phase of the shutter cycle.
b. Primary Model

The surface pressure distribution over the aft |
two-thirds of the primary model was measured by 27 static !
pressure ports on the model surface. The first 11 of these
ports were located on the constant area section of the model,
with the remaining 15 ports located on the diverging section.
Pressures at these ports were read, along with the freestream
dynamic pressure, on a 50-tube water manometer calibrated in
centimeters.

c. Ten-Channel Hot-Wire Probe

In order to investigate the boundary layer along
the surface of the primary model, an aluminum carriage
supporting ten constant temperature hot-wire anemometer
probes was employed. Each hot-wire could be individually
positioned from the surface to approximately three inches
above the surface. The carriage stood on magnetic feet that

3 matched the steel tracks in the model. This allowed a

continuous chordwise traverse of the probe from six inches

upstream of the point of divergence to approximately two inches

27
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from the trailing edge. During oscillating flow tunnel
operation, the probe exhibited a tendency to "walk" along its
magnetic track. In order to overcome this, a simple support
rig was installed consisting of a single threaded rod, mounted
to the hot-wire carriage and a streamlined stand, anchored to
the tunnel floor aft of the model. Figure 8 shows the hot-
wire probe in position of the model.

The ten-channel hot-wire circuits were identical
to the one employed in the freestream hot-wire. Figure 9 is
a typical calibration curve for non-oscillating flow, and
Figure 10, a typical calibration in Blasius flow, as demonstrated
by Despard /Ref. 3/ and Allen [Ref. §/.

Each sensing element was a 0.00015-inch diameter
tungsten filament one-eighth-inch long copper plated at its
ends to facilitate mounting. The effective sensing length of
each wire was approximately 0.080 inches.

Signals representing total instantaneous velocities
were produced at the outputs due to the DC coupled circuitry
of the anemometers. The oscillating velocity components of
the total velocity are proportional to the alternating current
component of the anemometer output, and were displayed on a
Tektronix 555 Dual Beam oscilloscope. The oscilloscope was
equipped with two, four-channel preamplifiers, permitting a
maximum of eight hot-wire outputs to be viewed simultaneously.
A Tektronix oscilloscope camera was used to record the multi-

channel display.
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III. EXPERIMENTAL PROCEDU

A. DETERMINATION OF PRIMARY MODEL GEOMETRY
1. Freestream Flow Characteristics
Prior to investigating the boundary layer character-
istics of the preliminary model, it was necessary to determine
the operating ranges of the freestream flow variables in

oscillating flow with the model installed in the test section.

The flow variables of interest were: mean tunnel velocity, {
frequency of oscillation, and amplitude of oscillation.
a. Mean Tunnel Velocity q

In order to insure a turbulent boundary layer over
the trailing edge of the model, mean tunnel velocities of
111 feet per second, 132.37 feet per second, and 148,16 feet
per second, were set and maintained via the variable inlet
vanes and measured with the pitot tube. These velocities
yielded Reynolds numbers, under average ambient conditions of

6 3 6 ‘

3.8 x 107, 4.5 x 107, and 5.1 x 10 for a characteristic

length of 70 inches.

b. Frequency of Oscillation
Shutter rotation frequencies, and therefore, flow
oscillation frequencies, of from 1 to 100 Hertz were investigated
in the initial testing. The frequencies were measured by the
previously described electro-optical system and were read

directly from the digital frequency counter. Shutter frequency

32




was varied from one to six Hertz in one Hertz increments, and
from 20 to 100 Hertz in two Hertz increments for a single
mean velocity. The frequency range of from 6 to 20 Hert:z
was not investigated due to shutter drive gearing difficulties.
Oscillation frequency was then retarded from 100 Hertz to
one Hertz by reversing the above procedure while maintaining
a constant mean tunnel velocity.
c. Amplitude of Oscillation

The amplitude of oscillation was measured with
the single-channel freestream hot-wire anemometer and the
AC component was read with a Ballantine true RMS voltmeter.
These readings were of change in streamwise velocity normalized
with freestream mean velocity (NA)‘ Amplitude readings were
taken at each frequency while traversing the frequency range
in the upward direction, then confirmed while descending the
frequency range.

Several experimental runs were made at each of
the mean velocities with two full data collection runs made
for each of the lower mean velocities, and one for the highest
velocity. Due to instrument fluctuations experienced at
frequencies less than four Hertz, the oscillation amplitude
values for the lowest frequencies were considered at best
approximate and were not reported.

2. B ary L ation on Preliminary M

The paramount purpose of the preliminary investigation

was to determine the combination of leading and trailing edge
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gsections that would give rise to turbulent boundary layer
separation on the trailing edge section. The use of tufts
on the trailing edge sections was believed to be the most
reliable and expedient method to study the desired
phenomenon, given the lack of instrumentation incorporated
into the preliminary model.

It became clear early in the testing that the leading
edge section had no real effect upon the desired conditions,
therefore, the 24-degree leading edge section was fixed in
position for the duration of the experiment.

The trailing edge sections were affixed with tufts,
as shown in Figure 4, and the model was run through the range
of freestream conditions. The stroboscopic light was connected
to the shutter shaft and cam, and was positioned so as to
effectively light the tufts. The reaction of the tufts to
the flow was visually studied to determine the effects of
flow oscillation on boundary layer separation. Numerous
experimental runs were made with the several trailing edge
sections under the various freestream conditions and with
stroboscopic and normal lighting.

3. Design of Primary Model

From the results of the preliminary investigation,
it was concluded that the primary model should be of similar
dimensions to those of the preliminary model with a trailing
edge incline of 18 degrees to best produce a turbulent

boundary layer that would separate at the desired location
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under test conditions. Due to structural difficulties
experienced with the wooden preliminary models, it was also
concluded that the primary model should be designed with
increased strength. The primary model constructed under the
above criteria was somewhat smaller in the chordwise
dimension than the preliminary model. The shorter chordwise
dimension positioned the divergent section of the model

45 inches from the leading edge. This shortening of the
chord for the primary model allowed a single test section
panel bolting and unbolting requirement for maintenance ease,
but still produced a sufficiently high Reynolds number at
one-half of the lowest preliminary test mean velocity. Jacobs
Zﬁef. 27 determined that a turbulent bour.dary layer would

6 for a

occur at a Reynolds number of approximately 1.0 x 10
flat plate, in this identical wind tunnel under similar test
conditions. The primary model would experience a Reynolds

)

number of 1.2 x 10~ at the point of divergence with a mean

velocity of 55 feet per second.

B. PRESSURE DISTRIBUTION ON PRIMARY MODEL

The pressure distribution over the primary model from a
position 22 inches aft of the leading edge to the trailing
edge wags determined by use of static pressure ports and a
manometer board. Several runs were made with both the 67 per
cent and 98 per cent occlusion shutter blades installed. The
frequency values used for data collection were 1, 2, 4, 6,

and 25 Herts, for both sets of shutter blades, 30 to 100 Hertz,
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and 30 to 70 Hertz, in ten Hertz increments, for the 67 per
cent and 98 per cent blades respectively. Considering that
the nondimensional coefficient of pressure (CP) was to be the
ultimate output of these runs, mean tunnel velocity was not
necessarily kept constant throughout the frequency range.
A maximum freestream oscillation amplitude at six Hertz i
was noted during this phase of the experiment as being 108 per

cent, while using the large shutter blades.

C. BOUNDARY LAYER CHARACTERISTICS
The boundary layer over the model was monitored to ensure

turbulent flow with the aide of the ten-channel hot-wire probe

VIS ¥

and the eight-trace oscilloscope. Evidence of turbulent flow

was taken to be the characteristic oscilloscope trace for

turbulence as discussed by Bradshaw /Ref. 8/.
Prior to each experimental run, calibration of the hot- j

wire anemometers was carried out in situ. The positioning

of the boundary layer probe's wires with respect to height

above the model was then set. The final setting of the

individual anemometers was accomplished after the calibration

in consideration of the possibility that one or more of the

wires may have failed the calibration procedure. The wire '

heights could then be adjusted so as to provide adequate

coverage of the boundary layer without the need to remove the

entire probe for repair. For the purposes of this initial

investigation, a meaningful run could be made with the free-

stream anemometer and five of the boundary layer anemometers
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being in calibration. The heights above the model surface,
for this worst-case hot-wire availability, were a wire each
at 0.05, 0.10, 0.20, 0.30, and 0.40 inches.

The wind tunnel was set to operate with an oscillation
frequency of 20 Hertz, oscillation amplitude of 18 per cent,
mean velocity of 15 feet per second, and the large shutter
blades installed. Photographs of the multi-trace oscilloscope
were taken with the hot-wire carriage set at various chordwise
positions. After completing this overall chorwise survey,
the carriage was positioned five inches downstream of the
point of model divergence. This mean freestream velocity was
then varied from 22 to 88 feet per second, and the oscillation
frequency varied from 20 to 70 Hertz, to complete this initial

turbulent bdboundary layer survey.
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Iv. RESULTS

A. DPRELIMINARY MODEL
1. QOscillation Amplitude Versus Frequency

The data collected from the freestream amplitude
investigation for the selected mean velocities indicates 3
that the mean velocity had little or no effect upon the
nondimensional amplitude factor, NA' A study of the data
shows that for a specific oscillation frequency (f), the
values obtained for NA were usually within one per cent of f
each other for any of the mean velocities tested. Due to ’

this similarlity, the values of amplitudes, for a given

frequency, were arithmetically averaged in order to be plotted
against oscillation frequency. Figure 11 is the graph of
oscillation amplitude versus oscillation frequency for a tunnel
occlusion of 67 per cent.

Figure 11 reveals the bulk of the values of NA to lie
between § and 15 per cent. Values larger ihan 15 per cent are
seen to have occurred at 21 - 22 Hz, and 90 - 94 Hz. Other,
less prominent, peaks occurred in the vicinity of 30 Hz, 40 Hz,
and 80 Hz. )

2. Boundary Laver Activity

The tufting of the preliminary model, as shown in

Figure 4, clearly evidenced a turbulent boundary layer in

existence over the area of interest in the case of the 18 and
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24 degree diverging model sections. Close study of the 24
degree section showed that the boundary layer remained
attached to the Row 1 area (Figure 4) as oscillation began
from steady flow conditions. The boundary layer remained
attached in this area until approximately 28 Hz when the
entire diverging section became stalled. The fully stalled
condition continued through approximately 70 Hz, when the
Row 1 area again showed turbulent boundary layer attachment.
The entire section again became fully stalled at the 80 Hz
reading and remained so through the test limit of 100 Hz.

The 18 degree diverging section displayed similar frequency
response but the turbulent boundary layer attachment point had
moved into the Row 2 and 3 area.

These results were quite repeatable and consistent through-

out the range of mean velocities (111 - 148 ft/sec).

B. PRIMARY MODEL
1. Pressure Distribution

A surface pressure survey was conducted with both the
67 per cent and the 98 per cent flow blockage shutter blades
installed. The range of oscillation frequency (f) was 1 Hz
to 100 Hz for the former and 1 Hz to 70 Hz for the latter
shutter blade configuration. To preclude physical damage,
the larger occlusion tests were limited to the 70 Hz level due
to violent tunnel behavior above this value. In fact, data

was collected at 80 Hz with the 98 per cent blades installed,

Lo




but, due to equipment vibration, that data point was not
repeated and therefore considered unreliable.

Figures 12, 13, and 14 depict the pressure coefficient
(CP) measured at each of the 27 pressure ports from 31.2 to
96 per cent chord for the case of 67 per cent flow blockage.
The peak of these curves (lowest value of CP) occurs uniformly
at port number 11 which was located just upstream of the point
of model divergence at 67 per cent chord. As may be seen, the
CP curves remain generally smooth throughout the frequency
range with all values of CP remaining more positive than the
steady state (f = 0 Hz) values.

The curves for frequencies of one Hz, two Hz, and four
Hz were identical to the curve for six Hz and were not presented.
As may be seen, the curve for six Hz is nearly identical to the
steady state value.

The values for 25 Hz, 40 Hz, and 80 Hz are also nearly
identical to each other. The curves of 30 Hz, 50 Hz, and 90 Hz
duplicate each other and are somewhat less negative than the
25 Hz series. The values for 100 Hz stand alone at the most
positive edge of the family.

The differences between the curves becomes generally
less pronounced downstream of the point of model divergence.
The values for 6 Hz, 25 Hz, and 30 Hz all merge at the 90 per
cent chord point. The 50 Hz and 60 Hz curves become nearly
coincident aft of 70 per cent chord. A similar situation occurs

for the 90 and 100 Hz CP values.
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Figures 15 and 16 present the pressure coefficient
versus chord for the 98 per cent occlusion shutter blades.
Here the one Hz and two Hz values track very closely with the
steady flow CP curve.

This family of curves behaves much differently than

the 67 per cent blockage curves. In general, there is a much

larger range of values of CP over the frequency range than
the smaller blockage, and the curves tend to be much more |
erratic in their behavior. Except as noted, no two curves
are alike.

The curve depicting an f of four Hz begins at values
much less negative than the steady state case, joining it at
the point of model divergence and then dropping sharply off E
until the 80 per cent chord point where it again rises to
become more negative than steady state only to immediately

fall off to a CP value of nearly zero.

e

The six Hz curve is nearly identical to the shape of
the four Hz curve with the exception that the CP value
remains constant until approximately 70 per cent chord. The
six Hz curve also fluctuates at 80 per cent chord then drops
off sharply to CP values near +0.5.
As the oscillation frequency is increased, the curves ]
become less erratic in their behavior. The 25 Hz curve shows
some of the tendencies of the 4 and 6 Hz curves, but at a

reduced level. The 60 Hz curve is nearly flat, while the 70 Hz

curve is indeed a straight line until approximately 90 per cent

chord, where it slowly increases.
ks s
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It should be noted that the large water manometer board
was well suited for this investigation due to the natural
damping of its measurements. It was relatively simple to
obtain the pressure data without the averaging necessary with {
a faster response system, especially at the higher frequencies.

2. Boundary layer

The turbulent boundary layer investigation performed

on the primary model was designed as a preliminary check on
apparatus suitability, operating procedures, and identification
of potential problems for future study of the flow phenomenon.
With these goals in mind, several series of experimental runs
were performed with the ten-channel hot-wire probe, and all
associated équipment in position and operating.

It was found that the setup and electronic calibration
of the probe could be performed efficiently and accurately
after a short initial learning period. This included the
manual setting of individual anemometer heights and identifi-
cation of any broken or questionable hot-wires.

The security of the probe on its magnetic feet and

i steel traverse was improved considerably by the addition of

; the supporting rod and stand. The probe was easy to move to

i any position and was secure in that position throughout the '

% frequency range of from 20 Hz to 70 Hz at several mean |
velocities.

The satisfactory performance of the primary model

and its measuring equipment was demonstrated during a .
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simulated data collection run. Figures 17 - 20 are typical

of the oscillographs taken from the multi-trace oscilloscope
during this final experiment. The uppermost trace depicts

the freestream flow read from the test section single hot-wire
anemometer. The second through fifth trace shows the boundary
layer flow at 0.05 inches, 0.10 inches, 0.20 inches, and 0.30
inches above the model surface. The sixth trace, if present,
depicts the boundary layer at 0.40 inches above the model.

The tunnel was run with the 98 per cent occlusion shutter
blades installed.

The freestream conditions for Figures 17 and 18 were
mean velocity set at 42 feet per second, oscillation frequency
set at 20 Hz, yielding an oscillation amplitude of 18 per cent.
The variable in the four osciilographs is the location of the
probe on the model. The range of locations shown are from
2 inches upstream of the model divergence point, (X/c = .67),
to 14 inches downstream, (*/c = .93).

The oscillographs in Figure 19 and the upper one in
Figure 20 are for a fixed probe location of five inches down-
stream of the model divergence point, (X/c = .78). Mean
tunnel velocity was increased to 51.4 feet per second and
frequency was made the variable. Note the increase in oscilla-
tion amplitude for the 20 Hz case. It was shown for the 67
per cent occlusion blades that the mean freestream velocity
had no effect upon the value of NA' The lower oscillograph

in Figure 20 is at the same conditions as the 20 Hz

49

kil




oscillograph of Figure 19 with the exception that the mean
velocity was increased to 103 feet per second. The oscillation
amplitude, however, remained the same as the 51.4 feet per
second case. .

It is clear that the boundary layer was entirely

turbulent throughout this test.
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TYPICAL CSCILLOGRAPHS

f = 20 Hz
X/e = .78

U = 42 ft/s
Ny = 18%

FIGURE 17
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f = 20 Hz

X/o = .84 ;
T = U2 ft/s

NA = 18%

TYPICAL CSCILLCOGRAFHS

f = 20 Hz
X/e = .93
42 ft/s
N, = 18%

i
]

FIGURE 18
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TYPICAL OSCILLOGRAPHS

f = 40 Hz
X/c = .78

U = 51.4 £t/s
Ny, = 39%

FIGURE 18

53

(5% \ N PR I i S SRR




£ = 60 Kz
X/e = .78

U = 51.4 £t/s
N = A
NA 29¢

TYPICAL CSCILLCGRAPHS

f = 20 Hz
X/c =
U =103 ft/s

e ,,;5 Aﬂm &MHM&

N, = 35% : L] b |
: g e g 1!
&umu
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V. CONCLUSIONS

From the results described above, the following
conclusions may be drawni

Oscillation amplitude is clearly a function of oscillation
frequency in this tunnel and may increase dramatically with
little change in frequency. The amplitude change of from
less than 5 per cent at 88 Hz to over 27 per cent at 90 Hz
is certain evidence of this fact.

The effect of mean freestream velocity upon oscillation
amplitude, when coupled with large flow occlusions, is not
clear. The mean freestream velocity showed to have no
noticeable effect upon amplitude in the 67 per cent flow
occlusion studys; however, the 98 per cent occlusion tests
showed mixed results. The amplitude doubled with a 22 per
cent increase in tunnel velocity at one point, but then
remained constant with a 100 per cent increase in mean
velocity.

Turbulent boundary layer separation over a two-dimensional
body may be affected by flow oscillation frequency. The
results of the tuft experiment support this conclusion.

The primary model design and construction is satisfactory

for the investigation of the effect of freestream oscillation

on turbulent boundary layer separation.
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The ten-~channel hot-wire boundary layer probe performed

well, but due to the large aerodynamic forces capable of
being produced by the tunnel, should be adequately braced

in the streamwise direction.
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APPENDIX EXPERIMENTAL DATA

TABLE I

MEASURED DIMENSIONLESS
OSCILLATION AMPLITUDE AS
A FUNCTION OF FREQUENCY

|
f NA f NA !
(HZ) (%) (HZ) (%) |
4 18.0 60 4.0
5 15.0 62 5.8 '
8 11.5 6l 7.9
21 15.5 66 7.6 ;
2l 8.8 68 2.0 ‘
26 5-6 - ?O 6.5 .
28 6.3 72 5.6 ;
30 11.5 74 5.8
32 9.3 76 11.0
34 9.0 78 13.0 i
36 8.5 80 1%.3 |
38 9.1 82 8.2
%0 9.k 8k 7.2
42 11.5 86 5.9
Ll 13.5 88 5.6
46 9.0 90 27.3
L8 9.7 92 17.3
50 18.7 9L 15.2
52 11.7 96 12.8
54 740 98 11.6
56 3.5 100 5.5
58 .5

NOTE: 1. Data reduced from raw data by arithmetic
averaging. )
2. f is Oscillation Frequency in Hertz. =
3. N, is nondimensional Oscillation Amplitude
A (24,
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TABLE II

qQ =7 cm H20

EXPERIMENTAL CSCILLATION
FREQUENCIES AND
AMPLITUDES DATA

P = 29.98 in Hg
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TABLE II (continued)

EXPERIMENTAL OSCILLATION
FREQUENCIES AND
AMPLITUDES DATA

qQ =7 cm Hy0 P = 29.98 in Hg
£ NA f
(H2) (%) (HZ)
iy 18.0 60
5 15.0 62
6 11.5 64
21 16.5 66
24 8.5 68
26 5.0 70
28 5.5 72
32 9.0 76
34 9.0 78
36 8.5 80
38 9.0 82
ko 3.5 84
i b3 12.5 86
Lé 8.5 88
48 9.5 90
50 19.0 92
54 6.0 94
56 5.0 98
58 4.5 100
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TABLE II (continued)

EXPERIMENTAL OSCILLATION
FREQUENCIES AND
AMPLITUDES DATA

g = 10 cm H,0 p = 30.00 in Hg T = 68°F
f Ny £ N,
(HZ) (%) (H2) (%)
23 13.5 64 6.5
2k 10.0 66 7.0
26 7.0 68 6.8
28 8.0 ?0 6.5
30 11.5 72 5.2
32 10.0 74 6.0
bl 9.5 76 9.8
Lo 9.5 82 8.5
Lk 14,0 8l 7.0
L6 9.5 86 5.5
48 10.0 88 5.0
50 18.0 90 27.0
52 11.0 92 19.0
[ 8.0 ol 15.0
56 6.0 96 12.0
58 4.8 98 10.0
60 3.5 100 5.0
60




TABLE II (continued)

qQ =10 cm Hzo

f
(H2)

EXPERIMENTAL OSCILLATICN
FREQUENCIES AND
AMPLITUDES DATA

p = 30.00 in Hg

3
(HZ)
64

66
68
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TABLE II (continued)

EXPERIMENTAL OSCILLATION »
FREQUENCIES AND
AMPLITUDES DATA

q =12.5 cm H,0 P = 29.99 in Hg T = 69°F 1
b NA f NA i'?
* (H2) (%) (HZ) (%) |
5 14.5 60 3.0 [
21 16.0 66 7.0 ;
24 8.9 68 6.5 ;;
26 k.s 70 6.0
28 6.0 72 5.0 ,
30 11.5 74 6.0 !
32 9.0 76 10.5 v
34 8.5 80 13.0
36 8.0 82 7.5 B
Lo 9.0 84 6.5 1
Lé 8.0 88 5.5 ]
L8 9.5 90 26.0
50 zg.o 9ﬁ 15.0
b 5 9 13.0
26 5.0 100 2.5
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TABLE III (continued)

MEASURED SURFACE PRESSURES
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TABLE IV

f =0 Hs
q=20cm Hzo
Static Port Pressure
Number (ea H,0)
1 37.8
2 36.8
3 35.8
b 35.3
5 34.8
6 3“08
7 3.8
8 33.8
9 35.8
10 36.8
11 39.8
12 35.8
13 34.3
14 32.3
15 29.3
16 28.3
17 25.8
18 24.8
19 23.8
20 23.3
21 22.8
22 22.3
23 21.3
24 20.8
25 20.3
26 20.0
27 19.8

PRESSURE SURVEY DATA

67% Shutter Blades Installed

PRIMARY MODEL
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Static Port
Number
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Anbient Conditions: Temperature = 68°F, Pressure = 30,00 inches Hg

qQ= 5.0 cm Hy0

Pressure
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TABLE IV (continued)

PRESSURE SURVEY DATA
PRIMARY MODEL

67% Shutter Blades Installed

Ambient Conditions: Temperature = 68°F, Pressure = 30,00 inches Hg

f =2Hs f =4 Hs
qzb.jcnﬂzo q=3.8an20
Static Port Pressure Static Port Pressurs e
Number (ca H,0) Number (em H,0) !
1 8.2 1 7.1 '
2 7.9 2 619
3 7'8 3 60? [
“ 706 “ 6-5 7
5 7.5 5 6.5 ;
6 7.5 6 6.5 )
7 706 ? 6.5 k
8 73 8 6.3
9 7.8 9 6.7
10 8.0 10 6.8
11 8.6 11 7.4
12 7.8 12 6.7
13 7.3 13 6.2
) 7.0 14 5.9
15§ 6.6 15 5.5
16 6.3 16 5.4
1?7 6.2 17 5.2
18 6.0 18 5.1
19 5.6 19 4.9
20 5.4 20 4.5
21 5.3 21 L.y
22 5.2 22 4.3 .
23 5.2 23 4.3 L
% 5.1 24 4.2
25 5.0 25 4.1
26 4,9 26 4.0
2?7 4.8 27 k.0
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TABLE IV (continued)

PRESSURE SURVEY DATA

PRIMARY MODEL

67% Shutter Blades Installed

Ambient Conditions:; Temperature = 68°F, Pressure = 30.00 inches Hg

f = 6 Hz f = 25Hz X
q=3.8an20 q=l+.5an.20
Static Port Pressure Static Port Pressure
Number (cm Hzo) Number (em HZO)
1 ' 7.0 1 7.8
2 6.7 2 7.7 :
B) 6.6 3 7.6 B
“ 6.5 “ 7'5 '
5 6.3 5 7.4 N
) 6.4 6 7.3 b
? 605 ? 7.2
8 6.1 8 7.0
9 6.7 9 7.6
10 6.8 10 7.8
11 7.4 11 8.3 ‘
12 6.7 12 7.6
13 6.3 13 7.0
14 5.9 14 6.6
15 5.7 15 6.3
16 5.5 16 6.1
1?7 5.2 17 5.8
18 5.1 18 5.8
19 4,7 19 5.6
20 4.5 20 5.3
21 b.S 21 5.3 .
22 4.2 22 5.3 '’
23 b2 23 5.2 i
2L h,2 24 5.1
25 4.1 25 5.0
26 b1 26 4,8
27 4.0 27 4.8




TABLE IV (continued)

PRESSURE SURVEY DATA
FRIMARY MODEL

67% Shutter Blades Installed
Ambient Conditions: Temperature = 68°F. Pressure = 30.00 inches Hg

f = 30 Hz f =40 Hz
q=5.0an20 qzu.jcnﬂzo
Static Port Pressure Static Port Pressurs
Number (ea H,0) Number (cm H,0)
1 ?‘8 1 6.8
2 7.6 2 6.7
3 7.4 3 6.6
4 7.3 4 6.4
5 7'3 5 6.3
6 7.3 6 6.3
7 7.3 7 6.3
8 701 8 6.0
9 7.8 9 6.6
10 7.8 10 6.8
11 8.8 11 7.3
12 7.8 12 6.8
13 7.0 13 6.3
14 6.8 14 5.8
15 6.6 158 5.6
16 6.4 16 5.5
17 6,0 1?7 5.3
18 5.8 18 5.0
19 5.6 19 4.8
20 5.3 20 4.7
21 5.3 21 4.6
22 5.2 22 4.4
23 5.2 23 4.3
% 5.1 24 4.3
25 5.1 25 4,2
26 5.0 26 4,1
27 4.8 27 4.0




TABLE IV (continued)

PRESSURE SURVEY DATA

PRIMARY MODEL

————— .

67% Shutter Blades Installed

Anbient Conditions; Temperature = 68°F, Pressure = 30.00 inches Hg

o —

£ = 90 He f = 60 Hz
q= 50cm H0 qg=3.8cnm H,0
Static Port Preasure Static Port Pressure . i
Number (cm Hzo) Number (cm Hzo) ’
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TABLE IV (continued) ]

PRESSURE SURVEY DATA

PRIMARY MODEL 1

67% Shutter Blades Installed

Ambient Conditions: Temperature = 68°F. Pressure = 30.00 inches Hg

£ = 70 He £ = 80 Hg
q=3.8anzo q=5.8¢m}!20
Static Port Pressure Static Port Pressure ;
Number (em H,0) Number (ca H,0) 5
1 6.8 1 7.6 |
2 6.6 2 7.4
3 6.3 3 7.2 ,
b 6.2 4 7.0 !
5 6.2 5 7.0 14
6 6.2 6 7.0 .-
7 6.2 7 7.0
8 5.8 8 6.8
9 6.4 9 7.6
10 6.6 10 7.8
11 7.0 11 8.6
12 6.4 12 8.0
13 6.0 13 7.3
14 5.6 14 7.0
16 5.2 16 6.6
17 5.0 17 6.3
18 4.8 18 6.1
19 4.6 19 5.8
20 4.4 20 5.6
21 b4 21 5.6 ‘
22 by 22 5.5
23 4.3 23 5.4 ,
2k 4,2 24 5.3 L
25 4,2 25 5.2
26 &.1 26 5.2
27 4.0 27 5.0
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TABLE IV (continued)

PRESSURE SURVEY DATA

i

} PRIMARY MODEL

67% Shutter Blades Installed

Ambient Conditions: Temperature = 68°F, Pressure = 30.00 inches hg

f = 90 Hz f =100 Hz
qzu.jcn}{zo q'—'BoBCHHZO ']
Static Port Pressure Static Port Pressure ‘
Number (cm H,0) Number (em H,0) w
1 7.0 1 6.8
2 6.8 2 6.6 ,
L 6.5 L 6. o
5 603 5 6-2 b
6 6.4 6 6.3 |
7 6.4 7 6.3 :
8 6.2 8 6.0
9 6.8 9 6-5
10 6.8 10 6.6
11 7.4 11 7.0
12 6.6 12 6.4
13 6.1 13 5.9
14 5.8 14 5.7
15 5.6 15 5.
16 5.4 16 5.3
17 5.2 17 5.0
E 18 5.0 18 4.8
‘ 19 4.8 19 4.6
B 20 k.6 20 4.4
| 21 4.6 21 .l
- 22 4.4 22 4,3 1
i 23 4.4 23 4.3 L
- 24 b4 24 4.2
f 26 4,2 26 4.1
! 27 4.0 27 4.0

|
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TABLE IV (continued)

PRESSURE SURVEY DATA
PRIMARY MODEL

98% Shutter Blades Installed

Ambient Conditions: Temperature = ?2°F‘. Pressure = 30,08 inches Hg

f =1Hz f =2 Hz [
q=3.0an20 q=2.0cnazo
Static Port Pressure Static Port Pressure
Number (em Hzo) Number (cm H,50)
1 5.0 1 4,0
2 4.9 2 3.9
3 4.8 3 3.7
4 4.5 4 3.5 ;
5 4,5 b] 3.5 :
3 4.5 6 3.5 3
? “05 7 3'5
8 4.4 8 3.3
9 5.0 9 3.6
10 5.0 10 3.6
11 5.3 11 4.0
12 5.0 12 3.6
13 4.5 13 3.3
14 4.3 14 3.2
15 4.0 15 3.0
16 3.9 16 2.9
17 3.5 17 2.9
18 3.7 18 2.7
19 3.5 19 2.7
20 3.3 20 2.5
21 3.3 21 2.5
22 3.3 22 2.3 ]
23 3.2 23 2.3
2L 3.1 2k 2.3 ;
25 3.0 25 2.1 :
26 3.0 26 2.1
27 3.0 27 2.0




TABLE IV (continued)

PRESSURE SURVEY DATA
PRIMARY MODEL

98% Sshutter Blades Installed

Amblient Conditions: Temperature = ?2°F. Pressure = 30,08 inches Hg

f =4 4z f = 6 Hg
q=0.5unH20 q=0.5cmH20
Static Port Preasure Static Port Pressure
Number (em H,0) Number (cm H,0)
b 1.3 1 0.7
2 1.2 2 0.6
3 1.4 3 0.5
4 1.0 4 0.5
5 1.0 5 0.5
6 1.0 6 0.5
7 1.0 7 0.5
8 1.0 8 0.5
9 1.0 9 0.5
10 1.0 10 0.5
11 1.0 11 0.5
12 0.9 12 0.5
13 0.7 13 0.3
14 0.6 14 0.3
15 0.6 15 0.3
16 0.5 16 0.3
17 0.5 17 0.3
18 0.7 i8 0.5
19 0.5 19 0.0
20 0.3 20 0.0
21 0.3 21 0.0
22 013 22 -001
23 0.2 23 -0.1
2l 0.2 20 -0,1
25 0.2 25 =0,.1
26 0.2 26 -0.2
27 0.1 27 -0.2
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TABLE IV (continued)

PRESSURE SURVEY DATA

PRIMARY MODEL

98% Shutter Blades Installed

Ambient Conditions: Temperature = 65° F, Pressure = 30,06 inches Hg

f = 25 Hz f = 30 Hz
q=1.0cmH20 q=2.0cmH20
Static Port Pressure Static Port Pressure
Number (em Hy0) Number (em H,0)
1 1.5 1 1.5
2 1.5 2 1.5
3 1.5 3 1.5
4 1.5 4 1.5
5 1.5 5 1.5
6 1.5 6 1.5
7 1.5 7 1.5
8 1.5 8 1.5
9 1.5 9 1.5
10 1.5 10 1.5
11 2.0 11 1.5
12 1.6 12 1.5
13 1.5 13 1.4
14 1.4 14 1.4
15 1.2 15 1.4
16 1.2 16 1.3
17 1.2 17 1.3
18 1.2 18 1.3
19 1.2 19 1.3
20 1.0 20 1.2
i 21 1.0 21 1.2
22 1.0 22 1.2
23 0.9 23 1.2
24 0.9 2k 1.2
25 0.9 25 1.2
26 0.9 26 1.2
' 27 0.8 27 1.2
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TABLE IV (continued)

PRESSURE SURVEY DATA

PRIMARY MODEL |

98% Shutter Blades Installed

Anblent Conditions: Temperaturs = 65°F, Pressure = 30,06 inches Hg

f =40 Hz f = 50 Hz
q_=2.0an20 q=2.2cnl{20
Static Port Pressure Static Port Pressure
Number (em H,0) Number (em H,0)
1 1.2 i 2.5
2 1.2 2 2.5
3 1.2 3 2.4
4 1.2 4 2.4 ']
5 1.2 5 2.4 "
6 1.2 6 2.4 ' .
7 1.2 7 2.4 .
8 1.2 8 2.4 ’
9 1.2 9 2.4
10 1.2 10 2.2
11 1.4 11 2.5
12 1.3 12 2.2
13 1.2 13 2.0 ]
1 1.2 14 2.0
15 1.2 i5 1.8
16 1.1 16 1.8 )
1? 1.1 17 107 4
18 1.2 18 1.7 :
19 1.2 19 1.6 i
20 1.2 20 1.5
21 1.2 21 1.5
22 1.2 22 1.5 ]
23 1.2 23 1.4 o
24 1.1 2k 1.3 i
25 14 25 1.2
26 1.1 26 1.1
27 14 27 1.0




TABLE IV (continued)

PRESSURE SURVEY DATA
PRIMARY MODEL

98% Shutter Blades Installed

Ambient Conditions: Temperature 65°F, Pressure 30.06 inches Hg

f = 60 Hz £f= 70 Hz
q=1.0cmH20 q,=0.8an20
Static Port Pressure Static Port Pressure
Number (em Hy0) Number (em H,0)

1 1.0 1 0.5
2 1.0 2 0.5
3 1.0 3 0.5
4 1.0 4 0.5
5 1.0 5 0.5
6 1.0 6 0.5
7 1.0 7 0.5
8 1.0 8 0.5
9 1.0 9 0.5
10 i.0 10 0.5
11 1.0 11 0.5
12 0.9 12 0.5
13 0.9 13 0.5
14 0.9 14 0.5
15 0.8 15 0.5
16 0.8 16 0.5
17 0.8 17 0.5
18 0.7 18 0.5
19 0.7 19 0.5
20 0.7 20 0.5
21 0.7 21 0.5
22 0.6 22 0.5
23 0.6 23 0.5
24 0.6 24 0.4
25 0.6 25 0.4
26 0.5 26 0.3
27 0.5 27 0.3

_




(U

1.

2,

3.

LIST OF REFERENCES

Karlsson, S. K. F., An Ungteady Turbulent Boundary
Lgxgg. Ph. D. Thesis, Johns Hopkins University,
1958,

Nickerson, R. J., The Effect of Free Stream Oscillation

on t Laminar Boundary layer on a Flat Plate, Sc. O.
Thesis, Massachusetts Institute of Technology, 1957.

Despard, R. A., Laminar Boundary layer Separation in

Oscillating Flow, Ph. D. Thesis, Naval Postgraduate
School, June 1969,

Miller, J. A., Trangition in Oscillating Blasiusg Flow,

Ph. D. Thesis, Illinois Institute of Technology
June 1963.

AGARD Conference Proceedings No. 227, Unsteady Boundary

Lavsrs, Separated and Attached, Demetri P. Telionis,
September 1977.

Allen, T. J., Pregsure Digtribution on an Airfoil in

Oscillating Flow, M. S. Thesis, Naval Postgraduate
School, June 1969.

Jacobs, K. J., Intengity Distribution in the Oscillating
Turbulent Boundary Layer on a Flat Plate, M. S. Thesis,

Naval Postgraduate School, March 1968,

Bradshaw, P., Introduction to Turbulence and Its
Meagurement, Peragamon Press, 1975.

e —




INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2 |
Cameron Station ‘
Alexandria, Virginia 22314

2. Libra%. Code 0142 2 »
Naval Postgraduate School
Monterey, California 93940

3. Department Chairman, Code 67 1
Department of Aerocnautics :
Naval Postgraduate School i
Monterey, California 93940

4. Assoc. Prof. J. A. Miller, Code 67Mo 1
Department of Aeronautics
Naval Postgraduate School .
Monterey, California 93940

5. LT Martin Fox, USN 1 .
13125 Wilcox Road #4B4 j
Largo, Florida 33540







